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From measurement of the pH, it is possible to calculate the free-ligand concentration in the study of metal ion complexes, 
without any assumption about the model, by using an extension of the Hedstrom-McKay relation as has been presented 
by Osterberg and others. In this study a similar technique is described, which allows the calculation of the complexity 
sum, Le., the total concentration of the metal ion complexes, and the free-ligand concentration from experimental pH and 
pM values. 

Introduction 
The complexity sum S, introduced by Sill&,’ can in its most 

general form be represented by eq 1 .  M, L, and H denote 

s = CIMpJ-q,Hr,l (1) 

the metal ion, the ligand, and the hydrogen ion, respectively. 
The summation in eq 1 is over all complexes which are present 
in the solution. p I  and qr can be any positive integer different 
from zero, and ri can be any integer, including zero (a negative 
value of r, means a hydroxide). S can be useful in the analysis 
of experimental data, describing metal ion complex equilibria, 
especially in determining the composition of the formed com- 
plexes, a main problem when polymeric, protonated, or hy- 
droxo complexes are present. p ,  the mean amount of com- 
plexed metal ion, 4, the mean amount of complexed ligand, 
and F ,  the mean amount of complexed hydrogen ion, can be 
calculated from S ,  when the values of [MI, [L], and [HI are 
known, by using the eq 2-4. Charges are omitted for the sake 

(2) P = [ C M  - [MI - C ~ , P p , o , [ M l ~ ~ [ H l r ~ l / ~  
J 

k 

of simplicity. p ,  4 ,  and i; have also been introduced by SillQS1 
CM, CL, and CH are the total concentration of metal ion, ligand, 
and titrable hydrogen ion, respectively. Ppqr is defined by eq 
5. The pPpr,’s are the stability constants which describe the 

hydrolysis of the metal ion, and the POqkrx’s are those stability 
constants which describe the acid-base equilibria of the ligand. 

In this paper it will be shown that S can be calculated from 
pH measurements in a way analogous to the methods pub- 
lished by Osterberg,2 Sarkar and K r ~ c k , ~  and Avdeef and 
Raymond4 for the calculation of the concentration of free 
ligand and free metal ion by the use of pH measurements 
alone, no assumptions being needed about the type of the 
complexes. Furthermore it will be shown that, when the values 
for pH and pM are known, the free-ligand concentration can 
also be calculated without any assumption about the formed 
complexes. 

(1) Sillen, L. G. Acta Chem. Scand. 1961, 15, 1981. 
(2) Osterberg, R.  Acra Chem. Scand. 1960, 14, 471. 
(3) Sarkar, B., Kruck, T .  P. A. Can. J .  Chem. 1973, 51, 3547. 
(4) Avdeef, A.; Raymond, K. N.  Inorg. Chem. 1979, 18, 1605. 

Gibbs and Gibbs-Duhem-Margules Equations and Metal 
Ion Complex Equilibria 

As discussed by Gokcens either the equation for the change 
of the Gibbs free energy or the Gibbs-Duhem-Margules 
equation can be used to calculate the partial molar properties 
of a multicomponent system provided that experimental data 
on the partial molar properties of one component is available. 
For this purpose two methods can be used. Darken6 obtained 
the desired property by an integration of the Gibbs-Duhem- 
Margules equation followed by differentiation. Wagner,7 
McKay,* and Schumann9 reversed the operations and obtained 
the desired molar property by integrating a cross-differentiation 
relation. Using this principle, McKay’O reported a method 
for calculating [MI from measurements of [L] for a mono- 
nuclear system. It  was the first time that a relation of that 
kind was published. A similar equation was found by 
Hedstrom” in a completely different way. Lefebvre’* gave 
for the first time a series of relationships applicable to general 
systems, including a clear statement of the integration and 
differentiation conditions, but with unusual symbols, as has 
been remarked by Sill&n,I and a rather unconvincing deriva- 
tion. He followed the method proposed by Darkea6 A method 
for determining the number of solute particles was given earlier 
by One of the present authors has also given some 
 relation^.'^-'^ 

Most of the systems containing metal ion complexes can be 
considered as quaternary systems, composed of m mol of metal 
ion, 1 mol of ligand, h mol of hydrogen ion, and w mol of water. 
The change of the Gibbs free energy at constant temperature 
and pressure is given by eq 6, and the Gibbs-Duhem-Margules 

(6) 
relation can be expressed as eq 7 .  In eq 6 and 7 K~ denotes 

(7 )  
the chemical potential of the component X. The derivation 
of eq 6 and 7 is described in a condensed form in the Appendix. 

Metal ion complexes in aqueous solution are usually studied 
under such conditions that the activity coefficients are ap- 
proximately constant; therefore, eq 8 can be written for each 

dG = PMdm + pLdl + PHdh + p,dw 

mdpM + IdpL + hdpH + wdp, = 0 

dpx = 2.303RT d log [XI (8) 
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(14) Van Poucke, L. C.; Herman, M. A. Anal. Chim. Acta 1968, 41, 1. 
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(16) Van Poucke, L. C. Inorg. Nucl. Chem. Lert. 1972, 8,  801. 

0020-1669/80/1319-3078$01.00/0 0 1980 American Chemical Society 



Determination of the Complexity Sum Inorganic Chemistry, Vol. 19, No. 10, 1980 3079 

solute. For the solvent, eq 9 holds at a constant value for the 
dp, = R T  d In x, (9 )  

(10) 
1 nw - - x, = 

n, + En, 1 + En,/n,  
1 I 

of water and CIn, is the total number of moles of solutes. Since 
for a dilute solution C,n,/n, << 1, eq 10 can be written as eq 
11. The volume of a dilute solution is directly proportional 

dp, = RTd(&/n,) (11) 
1 

to the amount of solvent, and, if the difference between n, and 
w is negligibly small, then 

n, = w = kV (12) 

where k is a proportionality factor. With eq 6-12 a number 
of equations can be derived. For example, cross-differentiation 
of (6) yields [a log [L]/dh] ,~,~ = [a log [H]/dl]m,h,w. Holding 
w constant is keeping V constant, and by putting V = 1 dm3, 
this equation can be transformed into eq 13. As has been 

a log [LI a 1% [HI [ ] c M , c L  = [ (13)  

demonstrated by Avdeef and R a y m ~ n d , ~  the Osterberg 
equation can be derived from (13) by using a Jacobian 
transformation. 

The analogous equation to the Osterberg equation can be 
obtained by using the method of Darken.6 For this purpose 
eq 7 is, after some transformations, integrated from pH' to p H  
at constant values of m, I ,  and w (eq 14). Equation 14 is then 

. .> 
W(PW - PCL,') (14) 

differentiated for 1 at constant values of m, [HI, and w. This 
gives, taking into account the Gibbs-Duhem-Margules 
equation at constant [HI, eq 15. With the use of preceding 

remarks, eq 15 may be written as eq 16. This equation differs 

from the Osterberg equation in the reversion of the operations. 
Sarkar and Kruck3 have given a somewhat similar treatment, 
but the integration and differentiation conditions are not clearly 
specified. 
Determination of the Complexity Sum 

When metal ion complex equilibria are described, mostly 
three independent variables are used: CM, CL, and CH. 
However from eq 6,7, and 12 it follows that four independent 
variables can be considered: m, I ,  h, and V. Up to now V was 
held constant. It will be shown that, by varying V in a con- 
ditional way, it is possible to determine C, the total concen- 
tration of the solutes. From eq 11 and 12 it follows that 

(17) 
C dp, = R T  d- k 

Since dG is a total differential, eq 18 can be obtained from 

considered as an extension of the equation given by ByC13 for 
a binary system. This equation is in fact equivalent with the 
method of Lefebvre'* as will be shown later. 

From C - C, the value for S ,  the complexity sum, can be 
calculated on the condition that [MI, [L], [HI, and C, are 
known. [HI is determined experimentally. [MI and [L] can 
be derived from experimental data by using, for example, the 
Osterberg equation. In most cases [MI can also be determined 
experimentally, and CO can be calculated from mass-balance 
equations provided that the value of [HI is sufficiently high 
to prevent complex formation. [L] can also be obtained from 
the experimental data, used for the calculation of C - C, by 
means of eq 20, on the condition that [MI can be determined 
experimentally. Consider therefore the Gibbs-Duhem- 
Margules equation (7) transformed by eq 8, 11, and 12: 

Note that eq 21 is equivalent with Sillin's' equation (17). 
Integration of eq 21 at constant values for C, and C, yields 
eq 22. The third term, the integral, can be evaluated by using 

C M  d In [MI + CL d In [L] + CH d In [HI - d C  = 0 (21) 

[MI [LI CH 
C M  In - + CL In - + 1 CH d In [HI - 

[MI0 [LIO Gb 
(C- C,) = 0 (22) 

the same experimental data as used for the calculation of C 
- C, from eq 20. The possibility of the determination of C 
- C,, provided [L] is known, as an alternative for the proposed 
method will be discussed later in this paper. Lefebvre12 found 
eq 23 which is analogous to eq 20 and which can be considered 
as an extension of ByC's13 formula. 

Equations 4 and 7 of Levebvre'* have been transformed in 
our notations; furthermore, ho can take on any value, in con- 
trast with the original formulations. Equations 20 and 23 are 
theoretically equivalent. 

Since in many cases [MI can also be determined experi- 
mentally, it can be useful to derive equations analogous to those 
given before, by starting from log [MI instead of log [HI. 
Validity of the Method 

For evaluation of eq 20 the following procedure is proposed. 
A solution containing m mol of metal ion, 1 mol of ligand, h 
mol of titrable protons, and w mol of solvent is diluted with 
pure solvent. After addition of each portion of the solvent, 
the pH is measured. In reality the solvent will not be pure 
water, but it will be an aqueous solution of an indifferent 
electrolyte. This dilution process is repeated a number of times 
in such a way that each starting solution contains the same 
amount of metal ions and ligand, but the amount of hydrogen 
ions is varied from one dilution process to another. 

In this way several pH vs. V curves are obtained. The 
derivative (a log [H]/c~V),,~,~ can now be evaluated at  each 
point of each curve. A series of integrations is then performed. 
In each integration series the values for the derivative are used 
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a t  the same V value, as is imposed by eq 20. 
The validity of eq 20 was tested, by using computer-gen- 

erated data for five different metal ion complex systems. For 
this purpose a computer program EQUIL, designed by Ting-Po 
and Nancollas,” was used. The five systems can be described 
as follows. 

System 1. The ligand is a dibasic acid with acidity constants 
log pOl2 = 14.00 and log poll = 11.00. Two complexes are 
formed: ML (log pll0 = 4.00) and MLOH (log pili = 6.00). 
Each solution contains m = 0.0005 mol and 1 = 0.001 mol; 
h is varied from 0.000 105 to 0.0021 mol in 20 equal steps, 
and Vis varied from 0.1 to 0.5 dm3 in 20 equal steps as well. 
In the other systems Vand h are varied in the same way as 
in system 1. In each series log K,  = -14.00. 

System 2. The ligand is a dibasic acid (log pOl2 = 12.00, 
log poll = 8.00) and forms the complexes ML (log pl lo  = 
4.50), M2L2 (log pzz0 = 12.00), and ML2 (log p120 = 7.00). 
Each solution contains 0.005 mol of M and 0.0015 mol of L, 
and h is varied from 0.000 155 to 0.0031 mol. 

System 3. The ligand is a dibasic acid (log polz = 12.00, 
log poll = 8.00) and forms the complexes M2L2 (log pzz0 = 
12.00) and ML2 (log plz0 = 7.00); m = 0.0005 mol, 1 = 0.0015 
mol, and h is varied from 0.000 155 to 0.0031 mol. 

System 4. The ligand is a tribasic acid (log po13 = 18.00, 
log pOl2 = 12.00) and forms ML (log pllo = 4.00) and ML2 
(log plz0 = 7.00); m = 0.0003 mol, 1 = 0.001 mol, and h is 
varied from 0,000 155 to 0.0031 mol. 

System 5. The ligand is a tribasic acid (log po13 = 18.00, 
log pOl2 = 15.00, log poll = 10.00) and forms MHL (log pili 
= 12.00), ML (log pllo = 4.00), ML2 (log p120 = 7.00), and 
MLOH (log pili = -6.00); m = 0.0003 mol, 1 = 0.001 mol, 
and h is varied from 0.000 155 to 0.0031 mol. 

In total, the five systems represent 1700 experimental points. 
For each point Cis calculated in two different ways; the results 
are called C1 and C2. 

C1 is calculated from eq 24. 

C = [MI + [LI + [HI + [OH1 + b o l l [ L l [ H l f  + 
c~ , , , ,~ , [Mlp‘ [L l~~[Hl r~  (24) 

C2 is obtained from the generated pH values and eq 20. Two 
standard IBM subroutinesls were hereby used: DDTG2-the 
differentiation of a tabulated function using second-degree 
polynomial interpolation-and DQTG-a quadrature of a 
tabulated function by trapezoidal rule. For each integration 
series Co is calculated from the most acidic solution of the 
series by using eq 25. 

CO = [MI + [Ll + [HI + [OH1 + b o l l [ L I [ H l 1  (25) 

For each point the percentage in which C2 differed from C1 
is calculated, For 86% of the points this difference is less than 
1%, and for 17% of the points it is less then 0.1%. Most of 
the deviations higher then 1% are observed when data are used 
for the first point of each dilution process (highest concen- 
tration). The highest difference stated between C1 and C2 was 
about 4%. The highest values for the differences between 
calculated and theoretical values for C coincide in each inte- 
gration series with the highest values for (8 log [H]/dV),,l,,. 
For reduction of these differences the number of dilution curves 
is increased in that concentration range. Thereby it is found 
that, when Ah, the difference in h values between two suc- 
cessive dilution curves, is halved, the 4% differences are re- 
duced below 1%. On the other hand no substantial im- 

Van Poucke, Yperman, and Frangois 

Table I. Differences between Calculated and 
Theoretical Values for C 

no. of uoints 

(17) Ting-Po, I.; Nancollas, G. H. Anal. Chem. 1972, 44, 1940. 
(18) IBM System/36O and System/370, IBM 1130, and IBM 1800 Sub- 

routine Library-Mathematics SH 12-5300- 1. 

CM, M >lo% >5% >2% >1% <0.1% 
2.5-0.6 25 93 290 314 0 
0.25-0.06 1 7 67 207 0 
0.025-0.006 0 0 17 137 3 
0.0025-0.0006 0 0  0 16 95 
0.000 25-0.00006 0 0 0 11 180 

provement is obtained by applying this procedure in the con- 
centration range where the results are already acceptable, 

The same generated data are also treated according to eq 
23, the method of Lefebvre.’* No differences could be ob- 
served between the results of eq 20 and 23, indicating that the 
two equations are not only theoretically but also practically 
equivalent at least when the above cited subroutines are used. 

With use of generated data, the validity of the method is 
tested as a function of the concentration. Therefore generated 
data are obtained by using the initial data of system 4 but with 
concentrations for CL, CM, and C, differing by a constant 
factor. The results of this test are summarized in Table I.  
Each test contains 380 points. It must be remembered here 
that increasing the number of dilution curves by decreasing 
Ah, as explained before, will reduce considerably the number 
of points with a great difference between the theoretical and 
calculated values for C. 

The validity of eq 22, used for the calculation of [L], has 
been tested in a number of cases. Both good and bad results 
are obtained. An analysis of the calculation reveals that for 
most points the third term of eq 22 is the dominating one. This 
term becomes in the integration process extremely inaccurate 
when ApH, the difference in pH between two successive points, 
is too high. For ApH values of 0.2-0.3, pL deviations of 0.001 
are found; on the contrary, for ApH > O S  deviations higher 
than 1 pL unit are observed. 

An alternative to the proposed method, as it has already 
been mentioned, is the calculation of [L] from an equation 
such as the Osterberg equation, followed by the calculation 
of C - Co from eq 23 on the condition that [MI is known. E.g., 
the use of the Osterberg equation imposes the constancy of 
CM, whereas in this method the ratio CM/CL must be a con- 
stant. That means that with a comparable number of ex- 
perimental data a greater concentration range of CM is covered 
by our method, a feature which is not unimportant in the study 
of polynuclear complexes. 
Appendix 

Consider a solution composed of m mol of metal ion M, 1 
mol of ligand L, h mol of hydrogen ion H, and w mol of water. 
In this solution a number of reactions take place, and hereby 
the following substances are formed: a series of metal ion 
complexes M,3L,tH,t(OH),,, represented by cl ,  metal ion hy- 
droxides M, ,(OH)qk,, represented by bk, and protonated 
products of t i e  ligand H,,L,,; represented by u,. The change 
in the stoichiometric coefficients (s = number of OH’S and 
r = number of H’s) is required because in this derivation a 
clear distinction must be made between H+ and OH’ due to 
differences in their chemical potential (see, e.g., eq A10). The 
differential of the Gibbs function of such a solution at constant 
temperature and pressure is given by eq A l .  The Gibbs- 
dG = /.LMdnM + /.&HdnH + pLdnL + /.LoHdnoH + pwdnw + 

&,dnc, + C & b k d n b k  + Cpo,dn, (A 
k J 

Duhem-Margules relation is given by eq A2. Here nx and 

n d b M  + n H d k  nLdpL noadpoe -t & d b ~  + 
Cnc,dpci + Fnbkdkbk + Cn,dya, = 0 (A2) 

I I 
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px are respectively the number of moles and the chemical 
potential of the component X. In this solution the mass- 
balance equations (A3)-(A6) hold. Equation A6 demonstrates 

(A3) m = nM + F p k ’ n b ,  + C P i n c ,  
i 

h = n H  - nOH - CSk’nbt - CSinC, + Frj’n, + Cr,nCi (A5) 
k I J i 

w = n, + nOH + Csk’nbk + %in, (‘46) 

the difference between w, the amount of water used by the 
preparation of the solution, and G, the actual amount of water. 

k i 

The equilibrium condition (A7) and the series of equilibrium 
k H  + POH = pw 

conditions (A8)-(A10) can be considered. Substitution of eq 
P k b M  + SkbOH = pbk 

q/bL + r/%H = pa, 

(‘47) 

(A8) 

(A9) 

PINM + qrpL + r ipH + $#OH = kc, (A10) 

A7-AlO into eq A1 and A2 gives eq A1 1 and A12 because 
of eq A3-A6. 

dG = pMdm + pHdh + pLdl+ p,dW (A1 1) 
mdpM + hdp, + ldpL + nwdpw = 0 (A12) 
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In the studies of ternary metal-ligand-hydrogen complex equilibria in aqueous solutions the variation techniques presented 
by Osterberg, Sarkar, Kruck, and McBryde allow one to calculate free metal and free (unassociated) ligand concentrations 
from titration experiments using only a pH electrode. The method, which is completely model independent, is extended 
in the present study to the determination of the average stoichiometric coefficients of the species present in solution. The 
approach is valid in the cases of mononuclear as well as polynuclear metal-containing species. The method was successfully 
applied to the evaluation of potentiometric data of a series of copper(I1) ethylenediamine titrations. 

Introduction 
Osterberg’ introduced an extremely valuable technique for 

evaluating free (unassociated) ligand concentrations in complex 
metal-ligand equilibria. The method was subsequently ex- 
tended to the determination of free metal concentrations by 
Sarkar and Kruck2 and M ~ B r y d e . ~  Later elaborations of the 
approach were presented by Guevremond and Raben~tein,~ 
Field and McBryde? and Avdeef and Raymond: The method 
is quite remarkable in that one uses only a pH electrode to 
determine pM and pL values (pX = -log [XI, where X = M, 
L, or H). One need not assume the identity of the species 
present in solution in order to apply the method, and in that 
sense the pM and pL values so derived are “model 
independent”. The method applies to both mononuclear and 
polynuclear metal c o m p l e x e ~ . ~ , ~  The technique, called the 
variation method (VM)6 since it requires several titrations 
where the total reactant concentrations are varied systemat- 
ically, owes some of its origins to the earlier work of Hedstrom’ 
and Sillene8 It appears to us to be a thoroughly valuable 
technique, and it surprises us that its use has not been more 
widespread. 

In the present paper we append to the VM approach a 
general procedure for determining the average stoichiometric 

(1) R. Osterberg, Acta Chem. Scand., 14, 471 (1960). 
(2) B. Sarkar and T. P. A. Kruck, Can. J .  Chern., 51, 3541 (1973). 
(3) W. A. E. McBryde, Can. J .  Chem., 55, 4211 (1977). 
(4) R. Guevremond and D. L. Rabenstein, Can. J .  Chem., 55,421 1 (1977). 
(5) T. B. Field and W. A. E. McBryde, Can. J .  Chem., 56, 1202 (1978). 
(6) A. Avdeef and K. N. Raymond, Inorg. Chem., 18, 1605-161 1 (1979). 
(7) B. Hedstrom, Acta Chem. Scand., 9, 613 (1955). 
(8) L. G. Sillen, Acta Chem. Scand., 1981 (1961). 

coefficients of the species which are present in solution. One 
needs no more data than those already required to determine 
the VM values of pM and pL. If a certain region in pH 
contains the j th metal-ligand-hydrogen complex Mew L, H,, 
the extended variation method (EVM) can be used to de- 
termine the number of different kinds of reactants present in 
the complex. These are the metal, ligand, and hydrogen 
stoichiometric coefficients: e,, el/, and eh,, respectively, of the 
j th associated species. If the region contains more than one 
complex, which is quite often the case in complicated equi- 
librium reactions, the EVM approach can be used to determine 
the average coefficients: d,, E l ,  and .$ Such information is 
often sufficient to identify most of the predominant species 
present in solution. However, in the analysis of complicated 
equilibrium systems, it is critically important to use data of 
the highest q ~ a l i t y . ~ , ~  Recently this has been emphasized by 
Vadasdi: who discussed a nonlinear least-squares method of 
composition analysis. The EVM technique we propose can 
be sensitive to experimental errors and in some adverse cases 
this may limit its application. 

We applied the new algorithm to a series of potentiometric 
titrations of copper(I1) ethylenediamine, with the total metal 
and ligand (abbreviated en) concentrations in the ranges 1-4 
and 6-16 mM, respectively. The large uncertainties in the 
equilibrium constantsi0J1 of the reported ternary complex 
Cu(en)20H+ and the weakly formed Cu(en)32+ species sug- 

(9) K. Vadasdi, J .  Phys. Chem., 78, 816-820 (1974). 
(10) H. B. Jonassen, R. E. Reeves, and L. Sogal, J .  Am. Chem. Soc., 77, 

2748 (1955). 
(11) H. Vink, Ark. Kemi, 11, 9 (1957). 
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